

Making and using compost in your backyard

University of Wisconsin-Extension Master Composter Program

Controlling the natural process of decay to transform organic wastes into a valuable soil amendment called compost.

Why compost?

Waste management

- Yard waste banned from landfills
- Encourages responsibility for your waste
- Reduces need for municipal collection

Finished Compost

- Valuable soil amendment
- Healthy soil leads to healthy plants

Benefits of adding compost to soil

- Supplies organic matter
- "Lightens" heavy soils
- Improves moisture retention in sandy soils
- Contains humus –"soil glue"
- Improves soil structure

Benefits of adding compost to soil

- Encourages vigorous root growth
- Allows plants to more efficiently utilize nutrients
- Enables soils to retain nutrients
- Buffers soil pH
- Supplies beneficial microorganisms
- Feeds soil life

How is compost made?

Natural process: Biological decomposition of organic matter in the presence of oxygen

Human influenced: We can speed up or slow down the process

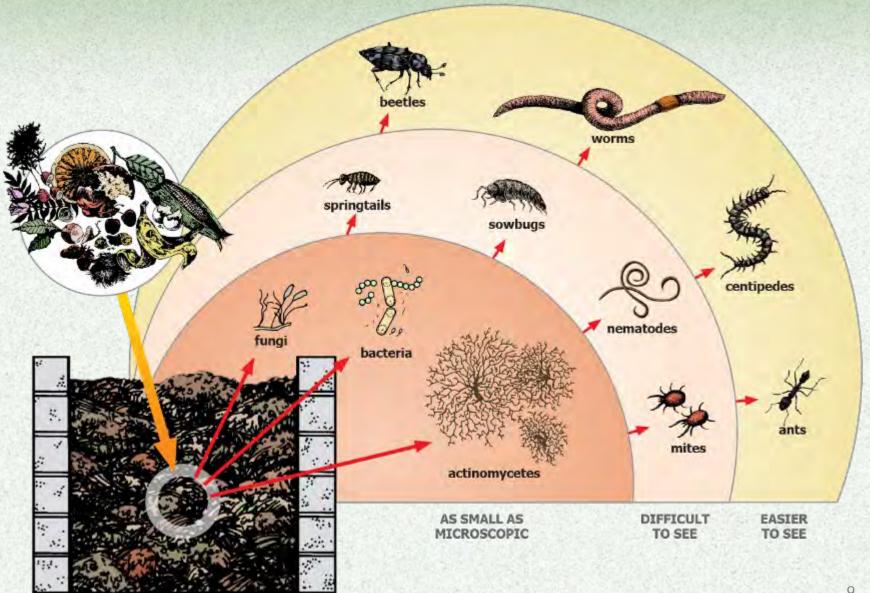
Microbes do the work

- Bacteria (including actinomycetes) and fungi
- Chemical decomposers enzymes
- Found in:
 - Soil
 - Leaves

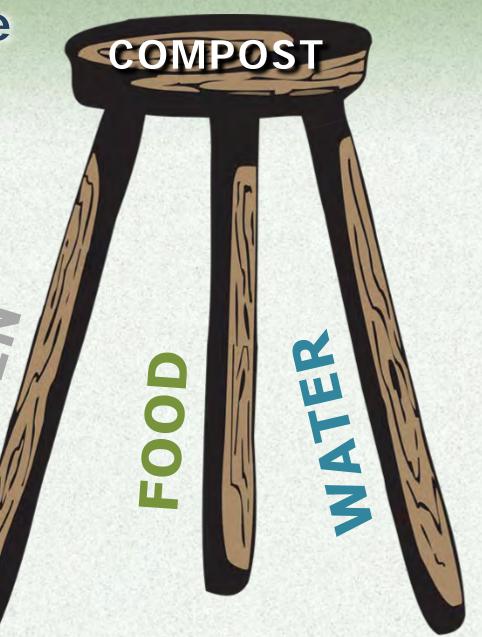
- Food scraps
- Manure

Finished compost

Are compost starters needed?


One teaspoon of good garden soil to which compost has been added may contain:

- 100 million bacteria


800 feet of fungal threads

Macroorganisms

Needs for the composting process

Acceptable materials – "food for decomposers"

- Leaves, grass clippings and yard debris
- Kitchen scraps: vegetable and fruit peels, coffee grounds and egg shells
- Used potting soil
- Paper and cardboard
- Manure from herbivores

- Most weeds and garden debris
- Sawdust, hay and straw
- Hair, fur and other natural fibers

Compost pile "food" to avoid

- Persistent weeds: crabgrass and quackgrass, invasive species and weeds gone to seed
- Meat, dairy and oils
- Cat or dog waste
- Diseased plants
- Lime and ashes
- Treated lumber or sawdust

Plant materials treated with pesticides

- Some pesticides can be persistent
- Some survive the composting process
- Can damage other plants

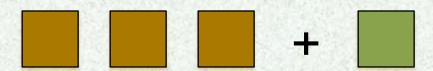
Materials with special needs

These require additional consideration or limited volume added

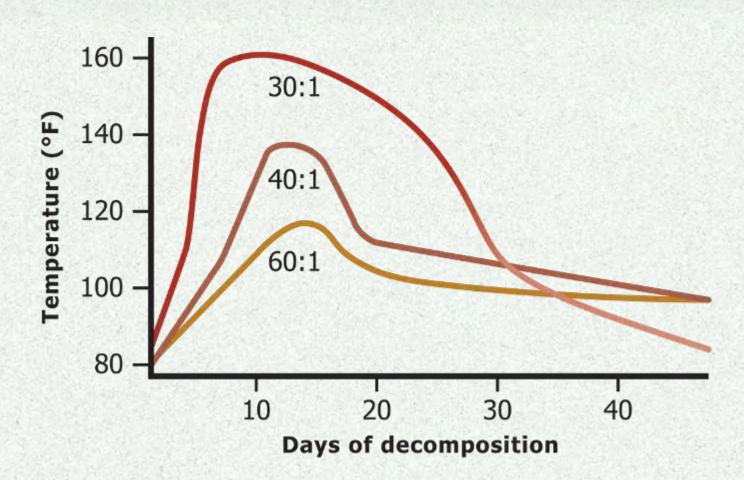
Pine needles

Walnut leaves

Sod


Organisms need a balanced diet

- Carbon (C) and Nitrogen (N) -


Composting will be most rapid if the decomposers are fed a diet of carbon-rich and nitrogen-rich materials

- Carbon-rich materials are known as "browns"
- Nitrogen-rich materials are known as "greens"

Rule-of-thumb is 2-3 browns for every green by volume

Effects of Carbon:Nitrogen ratios on composting

BROWNS

Leaves

Straw

Paper

Sawdust

Animal bedding mixed with manure

GREENS

Grass clippings

Vegetable scraps

Coffee grounds

Manure

- Cow
- Horse
- Poultry
- Rabbit

BROWNS

- Decay very slowly
- Coarse browns keep pile aerated
- Tend to accumulate in fall
- May need to stockpile until can be mixed with greens

GREENS

- Decay rapidly
- Aerate poorly may have foul odors if composted alone
- Tend to accumulate in spring and summer
- Supply nitrogen
- Best composting when mixed with browns

Diet, continued

Materials high in carbon break down slowly

High C:N - 30:1 and higher amounts of C

Materials that are too rich in nitrogen can lead to anaerobic conditions in the compost pile

Low C:N - less than 25:1

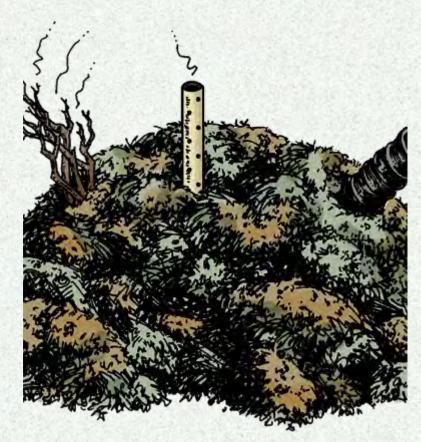
A final thought on C:N ratio

Mix two or three volumes

BROWN

to one of

GREEN


Oxygen

A pile starved for air will become anoxic or even anerobic

- Oxygen acids and amines (stinky compounds)
- Aerobic activity stops

Compost pile is out-of-balance

- Food or water out-of-balance (low C:N ratio or pile is too wet)
- Too many greens

Three types of venting

Particle size

Smaller particles have a greater surface area

Some larger particles are needed to maintain air flow

Particles create pore space within the pile

A compacted pile lacks the needed pore space

Water

Vital to support compost pile organisms

"Damp as well as wrung-out sponge"

40% to 60% moisture

Temperature

90° - 140° is optimal

Temperatures above 130° can kill pathogens and weed seeds

Excessive temps (greater than 160°) can kill beneficial organisms

Does my compost have to get hot?

Good compost can be made in a pile that never gets hot, but

- Decay will be slower
- Not enough air, too little water or too many browns in the mix could all keep a pile from heating

High pile temperature provides the benefit of

- The most rapid composting
- Killing pathogenic (disease causing) organisms
- Killing weed seeds

Pile size

Pile should be about 1 cubic yard to maintain temperature

 under 1 cubic yard is generally too small to reach temperatures above 130°F

Larger piles (greater than 3 cubic yards)

- May prove difficult to turn
- Lack oxygen in pile center

Choosing a compost strategy

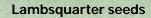
Hot piles

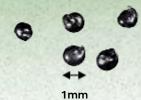
- Process takes about three months
- Plan ahead
- Store brown

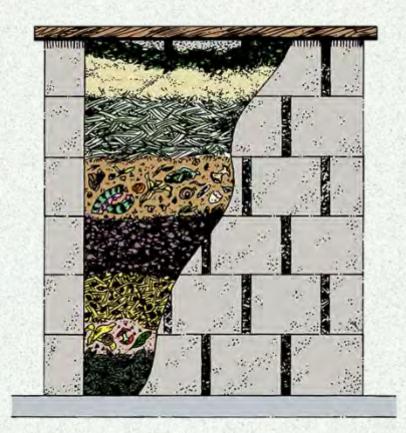
Cool piles

- Process takes one-half to two years
- Add materials as they accumulate
- Less effort

Hot compost pile


Pile built all at one time


Pile must be tended often


Compost in about 12 weeks

Benefits:

- Faster than cool method
- Reduces weed seeds

Hot compost pile

Mix 2-3 volumes of BROWNS to 1 of GREENS

Water as you add materials

Turn pile:

- Weekly for first 4-6 weeks
- Bi-weekly for next 4-6 weeks
- Let cure (let stand without turning)
 for 4 weeks after pile begins to cool

Cool and easy composting

Pile built as materials accumulate

Less intensive management

6 months to 2 years

Good method for kitchen scraps

Keep browns handy to cover

Leaves

Straw

Pile turning tips

Mix materials from outside to middle

Open pore space

Use garden fork or shovel

Add water if needed

Commercial turning (mixing) tools for compost are available

To bin or not to bin

Composting does not require a bin, but be sure to select a method that will work for you

- Compost heap, pile, trench and sheet may have aesthetic concerns
- Bins can be home-built or manufactured

Examples of home-built bins

Wood/Wire

Concrete Block Three-Bay

All-Wood Wire Mesh

Examples of commercial bins

Home Composter

Orb Tumbler

Bin or pile location

Near where the compost will be used

Two feet or more from buildings

Good drainage

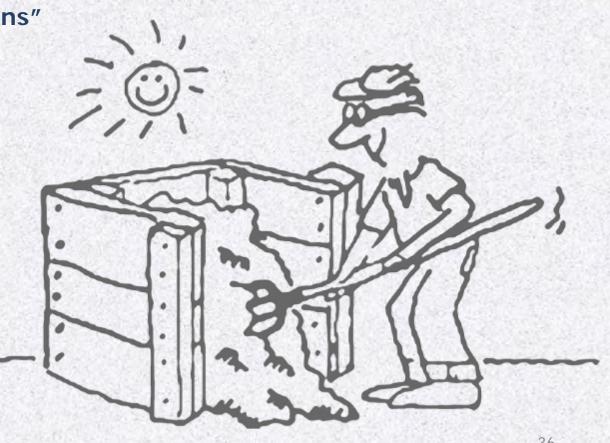
Away from wells

Be a good neighbor

Check local ordinances

Troubleshooting

Nothing is happening!


Pile is too dry

Not enough "greens"

My pile stinks!

- **Too wet**
- Excess "greens"
- Pile compacted

Pests

Using compost

Gardens, flower beds, lawns and houseplants

- Clay soils improves drainage and tilth
- Sandy soils increases moisture holding
- All soils improves soil structure
- All soils adds nutrients: nitrogen, phosphorus, potassium and micronutrients

When the composting process should be finished

Finished is also known as "mature" or "stable" compost

Compost is dark, loose and crumbly

Organic materials are unrecognizable

Ambient temperature

Simple test for mature compost

Germination test

- Will seed germinate in compost?
- Good test if using for potting soil

Bag test

- Seal compost in a plastic bag for 5-7 days
- Should produce no foul odor

Compost use continued

Unfinished compost can pull nutrients from the soil where it is placed

Compost can be screened

- Removes larger particles
- Necessary if used for top dressing

Compost application rates

2 inches mixed into top 6 to 8 inches of soil

Side-dress or mulch:

1-3 inches

Top-dress lawns: up to ½ inch screen compost

Spreading compost on the Wisconsin State Capitol lawn

Composting key points

✓Balanced diet

√Turn pile
when you
need to

This presentation was developed by Joe Van Rossum, University of Wisconsin–Extension, for use in Wisconsin's Master Composter program.

joseph.vanrossum@ces.uwex.edu

Photos and illustrations courtesy of: Joe Van Rossum, Penn State Cooperative Extension, UW-Madison CALS, USDA-NRCS, Ken Chamberlain/OSU/bugwood.org, Kevin Erb, Jeffrey J. Strobel, Jeff Miller, Kevin Schoessow, and David Parsons/NREL.

University of Wisconsin-Extension – Master Composter Program

